可观测宇宙

可观测宇宙(observable universe)是一个以观测者作为中心的球体空间,小得足以让观测者观测到该范围内的物体,也就是说物体发出的光有足够时间到达观测者。截至2013年对宇宙年龄最精确的估计是137.98±0.37 亿年。 但由于宇宙的膨胀,可观测宇宙的半径并不是固定的138亿光年,人类所观测的古老天体当前的距离比起其原先的位置要遥远得多(以固有距离(proper distance)来衡量,固有距离在现在的时点和同移距离是相等的)。 现在推测可观测宇宙半径约为465亿光年,直径约为930亿光年。 根据宇宙学原理,从任何方向到可观测宇宙边缘的距离大致是相等的。 “可观测”在这个意义上是指物体发出的光线或其他辐射可能到达观测者。经过计算,到CMBR粒子的同移距离(可视宇宙的半径)大约为140亿秒差距(约457亿光年),而到可观测宇宙边缘的同移距离大约为143亿秒差距(约466亿光年),大约比前者大2%。

可观测宇宙宇宙和可观测宇宙

宇宙中的部分区域由于过于遥远,以至于从大爆炸以来发出的光线未能有足够的时间到达地球。因此这一部分的区域在可观测宇宙之外。到了未来,从遥远星系发出的光线获得了更多的光行时间,所以目前宇宙中更多的区域将成为可观测宇宙的一部分。但是根据哈勃定律,宇宙中足够遥远的区域以超过光速的速度膨胀,远离地球而去,而相对地,邻近的物体间则不能以超光速运动。假设暗能量维持不变,宇宙继续加速膨胀,那么处在未来视界以外的天体在无限未来的任意一个时间点都永远无法进入可观测宇宙的范围,因为从那些天体发出的光永远无法到达我们。假设宇宙将一直持续膨胀下去,未来视界的同移距离经计算为190亿秒差距(620亿光年)。这意味着在理论上我们在未来无限时间内可观测的星系数量是当前可观测星系的数量乘以系数2.36。

虽然原则上到了未来更多的星系将变得可观测,而事实上越来越多的星系会因宇宙的不断膨胀而具有极高的红移值,它们将渐渐地从视线中消失,最终变成不可观测。 另一个微妙之处是在一个给定的同移距离上,如果我们可以收到从一个星系在其过去历史中的任意年龄段发出的信号,那么该星系可以被定义为位于可观测宇宙的范围内(比如该星系在大爆炸5亿年后发出的信号),但是因为宇宙膨胀,可能在该星系往后的年龄段上从同一星系发出的信号在无限未来的任意一个时间点都永远不会到达我们(例如在大爆炸100亿年后我们可能永远也无法知道该星系是什么样子的), 即便它仍然在相同的同移距离上(同移距离和固有距离不同,同移距离排除了宇宙膨胀因素的影响,因而不随时间变动)。这个事实可被用于定义一种距离随时间改变的事件视界。例如,当前到该事件视界的距离大约是160亿光年,意味着从当前发生的并且距离我们不超过160亿光年的事件发出的信号在将来最终将到达我们。但是如果事件发生在160亿光年以外,我们永远也接收不到信号。

不论是通俗的还是专业的研究文章都会使用“宇宙”一词指代“可观测宇宙”,因为我们不可能知道任何与我们没有因果关系的事物。但至今没有发现指出“可观测宇宙”等同于整个宇宙。根据宇宙暴胀理论,如果暴胀起于大爆炸后10−37秒,那么似乎能有理地假设成目前宇宙的大小约等于光速乘以它的年龄,这样就意味着整个宇宙的大小至少比可观测宇宙大3×1023倍。 有些更低的估计声称整个宇宙比可观测宇宙大250倍。

如果宇宙是有限的,宇宙也可能比可观测宇宙小。在这个情况下,观测者认为距离很远的天体,其实只是一个较近的天体发出的光环绕著宇宙移动而产生的复制影像。但这个理论很难被验证,因为天体的不同影像可能处于不同的时代,外貌因而大不相同。

可观测宇宙大小

从地球的任何方向到可观测宇宙的边缘大概是140亿秒差距(460亿光年),因此可观测宇宙是一个直径为290亿秒差距(930亿光年) (93 Gly或8.8×1026米)的球体。 假定宇宙空间在大致上是平坦的,可观测宇宙的容量相当于1.3×104 Gpc3(4.1×105 Gly3 或者3.5×1080 立方米)的同移体积。

以上数字为现在的距离(参见宇宙年表),而不是发光时点的距离。例如我们现在所见的宇宙微波背景辐射起源于再复合时期,即大约发生在大爆炸38万年之后。 产生宇宙微波背景辐射的绝大多数物质在其间凝聚成了星系,经计算这些星系离我们大约有460亿光年之遥。

根据弗里德曼-勒梅特-罗伯逊-沃尔克度规,如果我们接收到红移值为z的光线,那么最初发光时点的宇宙标度因子为:

.

WMAP九年数据结果结合其他测量值显示复合的红移值为z = 1,091.64±0.47 ,这意味着再复合时期的宇宙标度因子为1⁄1092.64。所以如果释放出最古老的CMBR光子的物质现在的距离是460亿光年,那么最初在光子退藕的再复合时期,该物质的距离仅为4,200万光年。

对可观测宇宙大小的误解

关于可观测宇宙的大小,许多二手资料发布了一些不正确的数字,以下举例。

138亿光年

宇宙年龄推断是138亿年。在常识上加速到或超过光速是不可能的,然而关于可观测宇宙的半径因此必须只有138亿光年的设想是一种普遍的误解。这种推导方式只有平坦、固定的闵可夫斯基时空架构在广义相对论下成立时才有意义。哈勃定律证明了在真实的宇宙中时空是弯曲的,以光速乘以宇宙时间得出的距离没有物理学意义。

158亿光年

依照和138亿光年半径相同的算法得出的数字,只不过用了2006年中旬媒体所报导的不正确的宇宙年龄数字。

276亿光年

这是从不正确的138亿光年半径得出的直径值。

780亿光年

柯尼施(Cornish)等一些学者在2003年基于我们所见的宇宙微波背景辐射(CMBR)对跖点之间的距离估计值得出的整个宇宙(并非可观测宇宙)直径的下限值。因为宇宙具有复杂的拓扑结构,如果我们设想宇宙大小是有限的,而整个宇宙小于这个球体,那么光线自大爆炸以后就有足够的时间在宇宙中环绕移动,从而产生CMBR远端点的多重影像,使之以重复的圆形图案呈现。柯尼施等人在240亿秒差距(780亿光年)的数值范围内寻找该效应,但没有任何发现。

1,560亿光年

这是假设780亿光年是半径而将之翻倍得出的数值。既然780亿光年已经是直径(柯尼施等人在原文中说到:“在把研究扩展到所有可能的方面之后,我们可以排除我们生活在直径小于240亿秒差距的宇宙中的可能性”,240亿秒差距即780亿光年),这个翻倍值是不对的,但这一数值已被广泛报导。 柯尼施任职的蒙大拿州立大学发表了一篇新闻稿,它在讨论《发现》杂志上的一篇文章时提到了该错误,新闻稿这样写道:“《发现》错误地报导了宇宙是1,560亿光年宽,认为780亿光年是宇宙的半径而不是直径。”

1,800亿光年

这是以三角座星系的距离比先前估计值增加了15%为依据,因而认为哈勃常数减小了15%,再加上错误地运用了上面的1,560亿光年数值来计算得出的结果。 1,800亿光年是在1,560亿光年数值基础上增加15%。

可观测宇宙大尺度结构

红移巡天和各种波长的电磁波(特别是21公分线)绘图为我们提供了许多关于宇宙结构性质和内容的信息。宇宙结构的组成像是分成了不同的等级,规模最大的包括超星系团以及大尺度纤维状结构。比纤维状结构更大的连续结构似乎就没有了,这种现象被称为最大结构之终结(End of Greatness)。

文章来源互联网:中文小百科 » 可观测宇宙

赞 (0)